- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Bardelli, S (1)
-
Boquien, M (1)
-
Béthermin, M (1)
-
Capak, P (1)
-
Cassata, P (1)
-
Cimatti, A (1)
-
Dessauges-Zavadsky, M (1)
-
Enia, A (1)
-
Faisst, A (1)
-
Fudamoto, Y (1)
-
Fujimoto, S (1)
-
Ginolfi, M (1)
-
Gruppioni, C (1)
-
Hathi, N P (1)
-
Ibar, E (1)
-
Jones, G C (1)
-
Koekemoer, A M (1)
-
Lemaux, B C (1)
-
Le Fèvre, O (1)
-
Loiacono, F (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT We report the serendipitous discovery of a dust-obscured galaxy observed as part of the Atacama Large Millimeter Array (ALMA) Large Program to INvestigate [C ii] at Early times (ALPINE). While this galaxy is detected both in line and continuum emissions in ALMA Band 7, it is completely dark in the observed optical/near-infrared bands and only shows a significant detection in the UltraVISTA Ks band. We discuss the nature of the observed ALMA line, that is [C ii] at $$z$$ ∼ 4.6 or high-J CO transitions at $$z$$ ∼ 2.2. In the first case, we find a [C ii]/FIR luminosity ratio of $$\mathrm{log}{(L_{[\mathrm{ C}\, \rm {\small {II}}]}/L_{\mathrm{ FIR}})} \sim -2.5$$, consistent with the average value for local star-forming galaxies (SFGs). In the second case instead, the source would lie at larger CO luminosities than those expected for local SFGs and high-z submillimetre galaxies. At both redshifts, we derive the star formation rate (SFR) from the ALMA continuum and the physical parameters of the galaxy, such as the stellar mass (M*), by fitting its spectral energy distribution. Exploiting the results of this work, we believe that our source is a ‘main-sequence’, dusty SFG at $$z$$ = 4.6 (i.e. [C ii] emitter) with $$\mathrm{log(SFR/M_{\odot }\, yr^{-1})}\sim 1.4$$ and log(M*/M⊙) ∼ 9.9. As a support to this scenario our galaxy, if at this redshift, lies in a massive protocluster recently discovered at $$z$$ ∼ 4.57, at only ∼1 proper Mpc from its centre. This work underlines the crucial role of the ALPINE survey in making a census of this class of objects, in order to unveil their contribution to the global SFR density at the end of the Reionization epoch.more » « less
An official website of the United States government
